
Journal of Computational Physics148,305–321 (1999)

Article ID jcph.1998.6103, available online at http://www.idealibrary.com on

P-stable Exponentially Fitted Methods
for the Numerical Integration of the

Schrödinger Equation

T. E. Simos

Section of Mathematics, Department of Civil Engineering, School of Engineering,
Democritus University of Thrace, GR-67100 Xanthi, Greece

E-mail: tsimos@leon.nrcps.ariadne-t.gr

Received May 21, 1998; revised September 17, 1998

A P-stable exponentially fitted method is developed in this paper for the numer-
ical integration of the Schr¨odinger equation. An application to the bound-states prob-
lem (we solve the radial Schr¨odinger equation in order to find eigenvalues for which
the wavefunction and its derivative are continuous and the boundary conditions are
satisfied) and the resonance problem (the point of a resonance is that phase changes
rapidly throughπ ) of the radial Schr¨odinger equation indicates that the new method
is generally more efficient than the previously developed exponentially fitted meth-
ods of the same kind. The method can be applied to any problem of physics and
chemistry, which can be expressed as system of coupled second-order differential
equations which have oscillatory or periodic solutions. This is because it has the
property of the P-stability (i.e., the interval of periodic stability of the proposed
method is equal to (0,∞)) which allow is to integrate successful problems with high
oscillatory or periodic solution. c© 1999 Academic Press

Key Words:radial Schr¨odinger equation, exponentially fitted, multistep methods,
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1. INTRODUCTION

The numerical solution of the Schr¨odinger equation has been the subject of great activity,
(see [1–3, 5–12, 15–26, 28, 31]) the aim being to achieve a fast and reliable method that
generates a numerical solution. The radial form of the Schr¨odinger equation can be written
as

y′′(x) = [l (l + 1)/x2+ V(x)− E]y(x). (1)

Equations of this type occur very frequently in theoretical physics and chemistry, quantum
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physics and chemistry, physical chemistry (see, for example, [6–7, 14, 27]), and it is needed
to be able to solve them both efficiently and reliably by numerical methods. In (1) the func-
tion W(x)= l (l + 1)/x2+V(x) denotesthe effective potential, which satisfiesW(x)→ 0
asx→∞, E is a real number denotingthe energy, l is a given integer, andV is a given
function which denotes the potential. The boundary conditions are

y(0) = 0 (2)

and a second boundary condition, for large values ofx, determined by physical considera-
tions.

A fruitful way for developing efficient methods for the solution of (1) is to use exponential
fitting. Raptis and Allison [19] have derived a Numerov-type exponentially fitted method.
The computational results obtained in [19] indicate that these fitted methods are much more
efficient than Numerov’s method for the solution of (1). Since then, exponential fitting has
been the subject of great activity. An interesting paper in this general area is that of Ixaru
and Rizea [7]. They showed that for the resonance problem defined by (1) it is generally
more efficient to derive methods which exactly integrate functions of the form

{1, x, x2, . . . , xp, exp(±vx), x exp(±vx), . . . , xm exp(±vx)}, (3)

wherev is the frequency of the problem (if a problem can be written in the form y′′(x)=
f(x)y(x), then thefrequency of the problemis defined to be equal to

√
f (x) ), rather than

using classical exponential fitting methods. The reason for this is explained in [25]. We note
here that the resonance problem is a stiff oscillatory problem. For the method obtained by
Ixaru and Rizea [7] we havem= 1 andp= 1. Another low order method of this type (with
m= 2 andp= 0) was developed by Raptis [16]. Simos [22] has derived a four-step method
of this type which integrates more exponential functions and gives much more accurate
results than the four-step methods of Raptis [15, 17]. For this method we havem= 3 and
p= 0. Simos [23] has derived a family of four-step methods which give more efficient
results than other four-step methods. In particular, he has derived methods withm= 0 and
p= 5, m= 1 and p= 3, m= 2 and p= 1, and finally,m= 3 and p= 0. Also Raptis and
Cash [20] have derived a two-step method fitted to (3) withm= 0 andp= 5, based on the
well-known Runge–Kutta-type sixth-order formula of Cash and Raptis [2]. The method of
Cash, Raptis, and Simos [3] is also based on the formula proposed in [2] and is fitted to
(3) with m= 1 andp= 3. All the above methods are not P-stable. Recently Coleman and
Ixaru [34] have derived P-stable exponentially fitted methods. The main problem of their
approach is the requirement for the knowledge of two frequencies for the same problem.
For many real problems this is impossible.

In this paper we introduce a new approach for exponential fitting. The purpose of this
paper is to derive a family of simple P-stable Numerov-type predictor–corrector methods
fitted to (3) and, in particular, to derive methods withm= 0 and p= 3 andm= 1 and
p= 1. The new methods are much more accurate than the corresponding exponentially
fitted methods of Ixaruet al. [7] and Raptis [16]. We have applied the new methods tothe
resonance problem(which arises from the one-dimensional Schr¨odinger equation) with two
different types of potential. Note thatthe resonance problemis one of the most difficult to
solve of all the problems based on the one-dimensional Schr¨odinger equation because it has
highly oscillatory solutions, especially for large resonances (see Section 4). We have also
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applied the new methods tothe bound-states problem. We note here that the method can be
applied to any problem of physics and chemistry, which can be expressed as a system of
coupled second-order differential equations which have oscillatory or periodic solutions.
Problems of the above type are, for example, the Duffin’s type equations, the Bessel’s type
equations, many problems of celestial mechanics, problems of molecular dynamics, and
many others.

2. EXPONENTIAL MULTISTEP METHODS

For the numerical solution of ther th-order initial value problem

y(r ) = f (x, y), y( j )(A) = 0, j = 0, 1, . . . , r − 1, (4)

whereA is low bound of the interval of integration, the multistep methods of the form

k∑
i=0

ai yn+i = hr
k∑

i=0

bi f (xn+i , yn+i ) (5)

over the equally spaced intervals{xi }ki=0 in [ A, B] can be used, whereB is the upper bound
of the interval of integration.

The method (5) is associated with the operator

L(x) =
k∑

i=0

[
ai z(x + ih)− hr bi z

(r )(x + ih)
]
, (6)

where z is a continuously differentiable function.

DEFINITION 1. The multistep method (5) called algebraic (or exponential) of orderp if
the associated linear operatorL vanishes for any linear combination of the linearly inde-
pendent functions 1, x, x2, . . . , xp+r−1 (or exp(v0x), exp(v1x), . . . ,exp(vp+r−1x) where
vi , i = 0, 1, . . . , p+ r − 1 are real or complex numbers).

Remark 1 (See [30, 21]).If vi = v for i = 0, 1, . . . ,n, n≤ p+ r − 1, then the operator
L vanishes for any linear combination of exp(vx), x exp(vx), x2 exp(vx), . . . , xn exp(vx),
exp(vn+1x), . . . ,exp(vp+r−1x).

Remark 2 (See [30, 21]).Every exponential multistep method corresponds in a unique
way, to an algebraic multistep method (by settingvi = 0 for all i ).

LEMMA 1 (For proof see [29, 30]). Consider an operator L of the form(6). Withv ∈ C,
h ∈ R, n≥ r if v= 0, and n≥ 1 otherwise, then we have

L[xm exp(vx)] = 0, n = 0, 1, . . . ,n− 1, L[xn exp(vx)] 6= 0 (7)

if and only if the functionϕ has a zero of exact multiplicity s atexp(vh), where s= n if
v 6= 0,and s= n− r if v= 0,ϕ(w)= ρ(w)/ logr w− σ(w), ρ(w)=∑k

i=0 aiw
i andσ(w)=∑k

i=0 biw
i .
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PROPOSITION1 (For proof see [31, 21]). Consider an operator L with

L[exp(±vi x)] = 0, j = 0, 1, . . . , k ≤ p+ r − 1

2
(8)

then for given ai and p with ai = (−1)r ak−i there is a unique set of bi such that bi = bk−i .

In the present paper we investigate the caser = 2.

3. THE DERIVATION OF EXPONENTIALLY FITTED METHODS

FOR GENERAL PROBLEMS

Consider the construction of an exponentially fitted multistep method (5) which exactly
integrates the set of functions{exp(±v j x)}kj=0. We will use this for the numerical solution
of the general problem (4).

From Lemma 1 we obtain the equations

ρ[exp(±v j h)] − (±v j h)
rσ [exp(±v j h)] = 0, (9)

or equivalently,

k∑
i=0

[ai exp(±v j h)− (±v j h)
r bi exp(±v j h)] = 0, j = 0, 1, . . . ,n, (10)

wheren≤ k andai , bi , i = 0(1)k are the coefficients of the multistep method (5).
We investigate here the case wherek is a positive number. Then, from Proposition 1 we

have a set ofk equations:

ai = (−1)r ak−i , bi = bk−i , i = 0, 1, . . . , k. (11)

We now letak= 1, which is the case adopted for all families of known multistep methods.
Then (10) and (11) give the system of equations,

2
k/2−1∑
i=1

ai sinh

[(
k

2
− i

)
w j

]
+ ak/2− wr

j

[
2

k/2−1∑
i=0

bi cosh

[(
k

2
− i

)
w j

]
+ bk/2

]

=−2 sinh

(
kw j

2

)
for r = 1, 3, 5, . . . (12)

2
k/2−1∑
i=1

ai cosh

[(
k

2
− i

)
w j

]
+ ak/2− wr

j

[
2

k/2−1∑
i=0

bi cosh

[(
k

2
− i

)
w j

]
+ bk/2

]

=−2 cosh

(
kw j

2

)
for r = 2, 4, 6, . . . , (13)

wherew j = v j h and j = 0, 1, . . . , k.
We now prove that the system of Eqs. (i) has a unique solution whenwi 6=±w j and

(ii) lead to undetermined expressions of the form (0/0) whenwi =±w j for somei and j .
Let X(w) andY(w) (w= vh) be the matrices of the unknown coefficients in the systems

of Eqs. (12) and (13), respectively. Consider case (i). In order to make the matricesX(w)
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(or Y(w)) singular, then their columns would be linearly dependent. The elements in a row
consist of terms like coshMw j , sinhNw j , and powers ofw j . The multiple angle hyperbolic
functions can be expressed in terms of powers of coshw j , sinhxj , and their products. These
with powers ofw j form a linearly independent set of functions. Therefore the columns
cannot be linearly dependent. Hence, in this case detX(w) 6= 0 (or detY(w) 6= 0). Thus
the system of equations (12) and (13) has a unique solution.

Consider case (ii). Here we simply have two rows of the matrix of coefficients the same
and, hence, detX(w)= 0 (or detY(w)= 0). Similarly, we have the right-hand side of two
of the equations in (10) or (11) the same so that the numerator determinant which is formed
when a column ofX(w) (or Y(w)) is replaced by the right-hand column will also give two
identical rows. Hence, the numerator determinant is 0. In these cases L’Hopital’s rule must
be used.

4. THE FAMILY OF EXPONENTIALLY FITTED METHOD

Consider the family of methods,

ȳn+1 = yn+1− ah2( fn + fn+1)

ȳn−1 = yn−1− ah2( fn + fn−1) (14)

yn+1− 2yn + yn−1 = h2[b0( f̄ n+1+ f̄ n−1)+ b1 fn],

whereyi = y(xi ), i = n− 1, n, n+ 1; ȳn±1= ȳ(xn±1); fi = [l (l + 1)/x2
i +V(xi )− E]y(xi ),

i = n− 1, n, n+ 1; f̄ n±1= [l (l + 1)/x2
n±1+ V(xn±1)− E] ȳ(xn±1).

This method for appropriate values ofbi , i = 0, 1, anda is of algebraic order four.
We require that the methods (14) should integrate exactly any linear combination of the

functions:

{1, x, x2, x3, exp(±vx)},
{1, x, exp(±vx), x exp(±vx)}.

(15)

To construct a method of the form (14) which integrates exactly the functions (15), we
require that the method (14) integrates exactly (see [18, 21]),

{1, x, exp(±v0x), exp(±v1x)}, (16)

and then put

v0 = 0, v1 = v,
v0 = v1 = v.

(17)

The method (14) integrates exactly the functions 1, x. Demanding that (14) integrates (16)
exactly, we obtain the following system of equations forbi , i = 0, 1, anda,

2b0w
2
j cosh(w j )− 2b0aw4

j + 2b0aw4
j cosh(w j )+ b1w

2
j = 2 cosh(w j )− 2, (18)

wherew j = v j h, j = 0, 1.
Solving forbi , i = 0, 1 we obtain
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CaseI. v0= 0, v1= v,

b0 = −1

2

w2− 2T0

w2T0(1+ w2a)
,

b1 = −2T0+ w2 cosh(w)+ w4aT0

w2T0(1+ w2a)
,

(19)

whereT0=−1+ cosh(w).
CaseII. v0= v1= v,

b0 = w sinh(w)− 2T0

w3(sinh(w)T1+ 2waT0)

b1 = 2
2 cosh(w)T0− w sinh(w)+ 4w2aT2

0

w3(sinh(w)T1+ 2waT0)
,

(20)

whereT0=−1+ cosh(w) andT1= 1+w2a.

5. STABILITY ANALYSIS

The periodic stability analysis of a numerical method is important for the determination
of the interval of periodicity. The interval of periodicity defines the stepsize which can be
used in order for the approximation of the solution of problems with high oscillatory or
periodic solution to be of the same order as the algebraic and/or exponential order of the
method. It is obvious that when we have a large interval of periodicity the we can have a
large stepsize for the same accuracy. It is obvious, also, that when we have small interval
of periodicity or zero interval of periodicity then we can have only very small stepsizes or
we may have divergence of the method. The most important property is the P-stability (i.e.,
the interval of periodic stability of the proposed method is equal to (0,∞)), because in this
case we can use a very large stepsize for the same accuracy.

We investigate the numerical integration of the problem:

y′′ = f (x, y), y(x0) = y0, y′(x0) = y′0. (21)

To examine the stability properties of the methods for solving the initial-value problem
(21) Lambert and Watson [13] introduce the scalar test equation

y′′ = −w2y (22)

and theinterval of periodicity. When we apply a symmetric two-step method to the scalar
test equation (22) we obtain a difference equation of the form

yn+1− 2Q(s)yn + yn−1 = 0, (23)

wheres=wh, h is the step length,Q(s)= B(s)/A(s), whereB(s)andA(s)are polynomials
in s, andyn is the computed approximation toy(nh), n= 0, 1, 2 . . .. For explicit methods
A(s)= 1.

The characteristic equation associated with (23) is

z2− 2Q(s)z+ 1= 0. (24)
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We have the following definitions.

DEFINITION 2 [35]. The method (23) with the characteristic equation (24) is uncondi-
tionally stable if|z1| ≤1 and|z2| ≤1 for all values ofwh.

DEFINITION 3. Following Lambert and Watson [13] we say that the numerical method
(23) has an interval of periodicity (0, H2

0 ), if, for all s2∈ (0, H2
0 ), z1 andz2 satisfy

z1 = ei θ(s), z2 = e−i θ(s), (25)

whereθ(s) is a real function ofs.

DEFINITION 4 [13]. The method (23) isP-stableif its interval of periodicityis (0,∞).

Based on the above we have the following theorems (for the proofs see [28]).

THEOREM 1. A method which has the characteristic equation(24) has an interval of
periodicity(0, H2

0 ), if for all s2∈ (0, H2
0 ), |Q(s)|< 1. For the implicit methods the above

relation is equivalent to A(s)± B(s)>0.

If we apply the new method (14) to the scalar test equation (22) we obtain the difference
equation (23) and the characteristic equation (24) with

A(s) = 1+ s2b0− s4b0a, B(s) = 1− 1

2
s2b1− s4b0a. (26)

If we apply the coefficientsb0 andb1 obtained above we have

CaseI. A(s)− B(s) = 1
2s2,

A(s)+ B(s) = 2− 1

2

s2(w2− 2 cosh(w)+ 2)

w2(−1+ cosh(w))(1+ w2a)
+ s4(w2− 2 cosh(w)+ 2)a

w2(−1+ cosh(w))(1+ w2a)

− 1

2

s2(−2 cosh(w)+ 2+ w2 cosh(w)− w4a+ w4a cosh(w))

w2(−1+ cosh(w))(1+ w2a)
. (27)

CaseII.

A(s)− B(s) = 2
s2(cosh(w)− 1)2(2w2a+ 1)

w3(sinh(w)− 2wa+ 2wa cosh(w)+ w2a sinh(w))

A(s)+ B(s) = 2+ s2(w sinh(w)− 2 cosh(w)+ 2)

w3T(w)
− 2

s4(w sinh(w)− 2 cosh(w)+ 2)a

w3T(w)

− s2
(
2 cosh(w)2− 2 cosh(w)−w sinh(w)− 8w2a cosh(w)+ 4w2a+ 4w2a cosh(w)2

)
w3T(w)

T(w) = sinh(w)− 2wa+ 2wa cosh(w)+ w2a sinh(w). (28)

RequiringA(s)+ B(s)>0 for all values ofv and remarking that the stability polynomial
A(s)+ B(s) for the two cases is a biquadratic polynomial we find the appropriate values of
a by solving the equation Dis= 0, where Dis is the discriminant of the biquadratic equation.
So, we have the following values for the coefficienta:
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CaseI.

a = − 4− 8ew + 4(ew)2− 4w + 4w(ew)2+ w2+ 2w2ew + w2(ew)2

w2
(
w2(ew)2− 2w2ew + w2+ 4w(ew)2− 4w − 16ew + 8+ 8(ew)2

) (29)

a = − 4− 8ew + 4(ew)2+ 4w − 4w(ew)2+ w2+ 2w2ew + w2(ew)2

w2
(
w2(ew)2− 2w2ew + w2− 4w(ew)2+ 4w − 16ew + 8+ 8(ew)2

) . (30)

The above formulae are subject to heavy cancellations for small values ofw= vh (for
example, whenw<0.5). In this case it is much more convenient to use series expansions
for the coefficienta. For the above reason we choose the second value ofa to avoid havingw
in the denominator in Taylor series expansions. An equivalent expression of this coefficient
is given by

a = w4T2+ 16w3 sinh(w)+ 4w2T3+ 16wT4+ 32T5

−w6T5+ 64w4T6− 64w2T5
, (31)

whereT2= 1− cosh(2w), T3 = cosh(2w) − 5+ 4 cosh(w), T4 = sinh(2w) − 2 sinh(w),
T5 = −cosh(2w)− 3+ 4 cosh(w), T6 = 1− cosh(w).

The Taylor series expansion of this coefficient is given by

a = − 1

12
+ 1

180
w2− 103

302400
w4+ 61

3024000
w6− 49337

41912640000
w8

+ 2231377

32691859200000
w10− 36126667

9153720576000000
w12+ 1064060519

4668397493760000000
w14.

(32)

Substituting the value ofa given by (30) to the coefficientsb0 andb1 given by (19) we
obtain

b0 = −1

4

−w2T0+ 4w sinh(w)− 8T0

T0w2
,

(33)

b1 = −1

2

−w2T0− 4w sinh(w)+ 8T0

T0w2
,

whereT0=−1+ cosh(w).
The Taylor series expansion of these coefficients are given by

b0 = 1

12
+ 1

360
w2− 1

15120
w4+ 1

604800
w6− 1

23950080
w8+ 691

653837184000
w10

− 1

37362124800
w12+ 3617

5335311421440000
w14,

(34)

b1 = 5

6
− 1

180
w2+ 1

7560
w4− 1

302400
w6+ 1

11975040
w8− 691

326918592000
w10

+ 1

18681062400
w12− 3617

2667655710720000
w14.

For the above coefficients we have thatA(s)± B(s)>0; i.e. the method isP-stable.
Based on the above formulae, we can use the following algorithm

Whenw≥ 0.5 then (31) and (33) expansions can be used.
Whenw<0.5 then (32) and (34) expansions can be used.
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CaseII .

a = − 1

2w2
(35)

a = −2w2+ 4w sinh(w)+ 1− cosh(2w)

14w2+ 4w4− 16w2 cosh(w)+ 2w2 cosh(2w)
. (36)

We choose the second value ofa to avoid havingw in the denominator. The Taylor series
expansion of this coefficient is given by

a = − 1

12
+ 1

90
w2− 221

151200
w4+ 877

4536000
w6− 119323

4656960000
w8+ 1133023

333590400000
w10

− 3090911491

6865290432000000
w12+ 208956373909

3501298120320000000
w14. (37)

Substituting the value ofa given by (36) to the coefficientsb0 andb1 given by (20) we
obtain

b0 = 16w4− 32w3 sinh(w)− 16w2T5− 8wT7+ 2T8

8w6+ 8w4T2+ w2T9
(38)

b1 = −32w4+ 64w3 sinh(w)− 32w2T5− 16wT10+ 4T11

8w6+ 8w4T2+ w2T9
,

where T2=1−cosh(2w), T5=−cosh(2w)−3+4 cosh(w),T7=sinh(3w)+13 sinh(w)−
8 sinh(2w),T8=cosh(4w)+12 cosh(2w)−13−8 cosh(3w)+ 8 cosh(w),T9=cosh(4w)−
4 cosh(2w) + 3, T10 = 3 sinh(3w) + 7 sinh(w) − 8 sinh(2w), T11 = 3 cosh(4w) +
4 cosh(2w) − 7 − 8 cosh(3w) + 8 cosh(w).

The Taylor series expansion of these coefficients are given by

b0 = 1

12
+ 1

180
w2− 1

1512
w4+ 19

907200
w6+ 13

17740800
w8− 8039

81729648000
w10

+ 27851

7846046208000
w12+ 408887

8002967132160000
w14,

b1 = 5

6
− 1

90
w2− 11

7560
w4+ 41

453600
w6− 17

26611200
w8− 15317

81729648000
w10

+ 1613

150885504000
w12− 362987

4001483566080000
w14.

(39)

For the above coefficients we have thatA(s)± B(s)>0; i.e. the method isP-stable.
Based on the above formulae, we can use the following algorithm:

Whenw≥ 0.5 then (36) and (38) expansions can be used.
Whenw<0.5 then (37) and (39) expansions can be used.

The local truncation error is given by:

CaseI.

L.T.E.(h) = h6

(
− 1

240

(
D(6)

)
(y)(x)− 1

360
w2
(
D(4)

)
(y)(x)− 1

144

(
D(4)

)
(y)(x)

)
. (40)



314 T. E. SIMOS

CaseII.

L.T.E.(h) = h6

(
− 1

240

(
D(6)

)
(y)(x)− 1

180
w2
(
D(4)

)
(y)(x)+ 1

360
w4
(
D(2)

)
(y)(x)

− 1

144

(
D(4)

)
(y)(x)

)
. (41)

6. NUMERICAL ILLUSTRATIONS

In this section we present some numerical results to illustrate the performance of our new
methods. Consider the numerical integration of the radial Schr¨odinger equation (1).

6.1. Resonance Problem

We will here investigate the case of positive energyE= k2, corresponding to a scattering
state. In this case, in the asymptotic region, the potential functionV(x) generally dies away
faster than the terml (l + 1)/x2; Eq. (1) effectively reduces to

y′′(x)+
(

k2− l (l + 1)

x2

)
y(x) = 0 (42)

for x greater than some value X.
The above equation has linearly independent solutionskx jl (kx) andkxnl (kx), where

jl (kx), nl (kx) are thespherical Bessel and Neumann functions, respectively. Thus, the
solution of Eq. (1) has the asymptotic form (whenx→∞)

y(x) ' Akx jl (kx)− Bkxnl (kx)

' D[sin(kx− π l/2)+ tanδl cos(kx− π l/2)], (43)

whereδl is thephase shiftwhich may be calculated from

tanδl = y(x2)S(x1)− y(x1)S(x2)

y(x1)C(x2)− y(x2)C(x1)
(44)

for x1 and x2 distinct points on the asymptotic region (for which we have thatx1 is the
right-hand end point of the interval of integration andx2= x1− h, h is the stepsize) with
S(x)= kx jl (kx) andC(x)= kxnl (kx).

Since the problem is treated as an initial-value problem, one needsy0 and y1 before
starting a two-step method. From the initial condition,y0= 0. The valuey1 is computed
using the Runge–Kutta–Nystr¨om 12(10) method of Dormandet al. [36–37]. With these
starting values we evaluate atx1 of the asymptotic region the phase shiftδl from the above
relation.

6.1.1. The Woods–Saxon potential.As a test for the accuracy of our methods we con-
sider the numerical integration of the Schr¨odinger equation (1) withl = 0 in the well-known
case where the potentialV(r ) is the Woods–Saxon one,

V(x) = Vw(x) = u0

(1+ z)
− u0z[

a(1+ z)2
] (45)

with z= exp[(x− X0)/a], u0=−50,a= 0.6, andX0= 7.0.
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For positive energies one has the so-called “resonance problem” whenthe positive eigen-
energies lie under the potential barrier. The problem considered here consists either of
finding thephase shiftδ(E)= δl or of finding thoseE for E ∈ [1, 1000], at whichδ equals
π/2. In our case we find the phase shifts for given energies. The obtained phase shift is then
compared to the accurate value of the phase shift which is equal toπ/2.

The boundary conditions for this problem are

y(0) = 0,

y(x) ∼ cos[
√

Ex] for largex.

The domain of numerical integration is [0, 15].
For comparison purposes in our numerical illustration we use the well-known Numerov’s

method (which is indicated as method [a]), the exponentially fitted methods of Raptis and
Allison [19] (which is indicated as method [b]), Ixaru and Rizea [7] (which is indicated
as method [c]), the method of Chawlaet al. [32] (which is indicated as method [d]), the
method of Chawlaet al. [33] (which is indicated as method [e]), the new exponentially
fitted method (Case I) (which is indeicated as method [f]) and the new exponentially fitted
method (Case II) (which is indeicated as method [g]). We note here that the methods [b]
and [c] integrate the same exponential functions as the methods produced in this paper and
the methods [d] and [e] are fourth-order Numerov-type with minimal phase-lag or P-stable.

The phase shifts obtained for the seven methods, with stepsizes equal toh= 1/2n, were
compared with the accurate value of the phase shift which is equal toπ/2. Figure 1 shows
the errors Err= −log10|phase− shiftcalculated−π/2| of the highest eigenenergyE3=
989.701916 for several values ofn.

The performance of the present method is dependent on the choice of the fitting parameter
v. For the purpose of obtaining our numerical results it is appropriate to choosev in the
way suggested by Ixaru and Rizea [7]. That is, we choose

v =
{
(−50− E)1/2 for x ∈ [0, 6.5],

(−E)1/2 for x ∈ (6.5, 15].
(46)

For a discussion of the reasons for choosing the values 50 and 6.5 and the extent to which
the results obtained depend on these values see [7, pp. 25].

6.1.2. Modified Woods-Saxon potential.In Fig. 2 some results errors for Err=
−log10|Ecalculated− Eaccurate| of the highest eigenenergyE3= 1002.768393 for several val-
ues ofn, obtained with another potential in (1), using the methods mentioned above, are
shown. We note here that the valueE3= 1002.768393 is considered as the accurate one.
We use this potential in order to see the accuracy of the proposed methods in the case which
the potential has a singularity. The proposed potential is

V(x) = VW(x)+ D

x
, (47)

whereVW is the Woods–Saxon potential (45). For the purpose of our numerical experiments
we use the same parameters as in [7], i.e.D= 20, l = 2.

SinceV(x) is singular at the origin, we use the special strategy of [7]. We start the
integration from a pointε >0, and the initial valuesy(ε) andy(ε+ h) for the integration
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FIG. 1. Values ofErr for several values ofn for the resonanceE= 989.701916. The non-existance of a value
for a method indicates that Err is negative. Methods used: (i) Numerov’s method (which is indicated as method
[a]); (ii) the exponentially-fitted methods of Raptis and Allison [19] (which is indicated as method [b]); (iii) Ixaru
and Rizea [7] (which is indicated as method [c]); (iv) the method of Chawlaet al. [32] (which is indicated as
method [d]); (v) the method of Chawlaet al. [33] (which is indicated as method [e]); (vi) the new exponentially
fitted method (Case I) (which is indicated as method [f]); and (vii) the new exponentially fitted method (Case II)
(which is indicated as method [g]).

scheme are obtained using a perturbative method (see [6]). As in [7] we use the valueε= 1
4

for our numerical experiments.
For the purpose of obtaining our numerical results it is appropriate to choosev in the

way suggested by Ixaru and Rizea [7]. That is, we choose

v =



[V(a1)+V(ε)]
2 for x ∈ [ε,a1]

V(a1)

2 for x ∈ (a1,a2]

V(a3) for x ∈ (a2,a3]

V(15) for x ∈ (a3, 15],

whereai , i = 1(1)3, are fully defined in [7].
The positive eigenenergies are computed as the solutions of the transcendental equa-

tion which results by matching the logarithmic derivatives of the forward and backward
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FIG. 2. Values ofErr for several values ofn for the positive eigenenergyE= 1002.768393. The nonexistance
of a value for a method indicates that Err is negative. Methods used: (i) Numerov’s method (which is indicated as
method [a]); (ii) the exponentially fitted methods of Raptis and Allison [19] (which is indicated as method [b]);
(iii) Ixaru and Rizea [7] (which is indicated as method [c]); (iv) the method of Chawlaet al. [32] (which is indicated
as method [d]); (v) the method of Chawlaet al. [33] (which is indicated as method [e]); (vi) the new exponentially
fitted method (Case I) (which is indeicated as method [f]; and (vii) the new exponentially fitted method (Case II)
(which is indeicated as method [g]).

approximate solutions at the pointa3. The asymptotic solution in this case is the well-
known Coulomb function. The values of the Coulomb function at the pointsx= 15 and
x= 15− h, required for the backward integration, are calculated using the method which
is fully described in [7].

6.2. The Bound-States Problem

For negative energies we solve the so-called bound-states problem, i.e. Eq. (1) withl = 0
and boundary conditions given by

y(0) = 0,

y(x) ∼ exp(−√−Ex) for largex.

In order to solve this problem numerically we use a strategy which has been proposed by
Cooley [5] and has been improved by Blatt [1]. This strategy involves integrating forward
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from the pointx= 0, backward from the pointxb= 15, and matching up the solution at some
internal point in the range of integration. As initial conditions for the backward integration
we take (see [3]):

y(xb) = exp(−√−Exb), y(xb − h) = exp[−√−E(xb − h)], (48)

whereh is the steplength of integration of the numerical method.
The true solutions to the Woods–Saxon bound-states problem were obtained correct to

nine decimal places, using the analytic solution, and the numerical results obtained for the
seven methods mentioned above were compared to this true solution. In Fig. 3 some results
for errors Err=−log10|Ecalculated− Eaccurate|of the eigenenergyE0=−49.457788728 using
stepsizes equal toh= 1/2n for several values ofn are shown. In Fig. 4 some results for

FIG. 3. Values of Err for several values ofn for the eigenvalueE=−49.457788728. Methods used:
(i) Numerov’s method (which is indicated as method [a]); (ii) the exponentially fitted methods of Raptis and
Allison [19] (which is indicated as method [b]); (iii) Ixaru and Rizea [7] (which is indicated as method [c]);
(iv) the method of Chawlaet al. [32] (which is indicated as method [d]); (v) the method of Chawlaet al. [33]
(which is indicated as method [e]); (vi) the new exponentially fitted method (Case I) (which is indicated as method
[f]); and (vii) the new exponentially fitted method (Case II) (which is indicated as method [g]).
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FIG. 4. Values of Err for several values ofn for the eigenvalueE=−8.676081670. Methods used:
(i) Numerov’s method (which is indicated as method [a]); (ii) the exponentially fitted methods of Raptis and
Allison [19] (which is indicated as method [b]); (iii) Ixaru and Rizea [7] (which is indicated as method [c]);
(iv) the method of Chawlaet al. [32] (which is indicated as method [d]); (v) the method of Chawlaet al. [33]
(which is indicated as method [e]); (vi) the new exponentially fitted method (Case I) (which is indeicated as method
[f]); and (vii) the new exponentially fitted method (Case II) (which is indeicated as method [g]).

Err=−log10|Ecalculated− Eaccurate| of the eigenenergyE12=−8.676081670 using stepsizes
equal toh= 1/2n for several values ofn are also shown. We note here that the values
E0=−49.457788728 andE12=−8.676081670 are considered as the accurate ones.

In all the above examples we compare the value of Err, i.e. the values of absolute error. It is
obvious that when we have a small absolute error, the value of Err is large. Based on this and
on Figs. 1–4, we can observe that the new exponentially fitted P-stable methods developed
in this paper are more accurate than the other similar well-known exponentially fitted ones,
i.e. the method of Raptis and Allison [19] and the method of Ixaru and Rizea [7], and they are
more accurate than the very popular methods of Chawlaet al. [32–33]. More specifically,
from the results presented in the Figs. 1–4 one can see the importance of the property of
P-stability, since it can be seen that, even for high resonances or eigenvalues (in which
cases the solution is highly oscillatory) and high stepsizes, the new methods are much more
accurate than the other finite difference ones (most of which are diverged for high stepsizes).
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7. CONCLUSIONS

In this paper a new approach for constructing exponentially fitted methods is developed.
Using this new approach we can construct methods which exactly integrate functions of
the form (3) and which are P-stable. With this new approach we must know only one
approximation of the frequency of the problem for each interval of integration. Based on
this new approach two P-stable exponentially fitted methods are obtained. Numerical and
theoretical results show that these methods are much more accurate than similar well-known
exponentially fitted ones, i.e. methods which integrate the same functions.

All computations were carried out on a IBM PC-AT compatible 80486 using double
precision arithmetic with 16 significant digit accuracy (IEEE standard).
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