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A P-stable exponentially fitted method is developed in this paper for the numer-
ical integration of the Scladinger equation. An application to the bound-states prob-
lem (we solve the radial Sabdinger equation in order to find eigenvalues for which
the wavefunction and its derivative are continuous and the boundary conditions are
satisfied) and the resonance problem (the point of a resonance is that phase changes
rapidly throughr) of the radial Schodinger equation indicates that the new method
is generally more efficient than the previously developed exponentially fitted meth-
ods of the same kind. The method can be applied to any problem of physics and
chemistry, which can be expressed as system of coupled second-order differential
equations which have oscillatory or periodic solutions. This is because it has the
property of the P-stability (i.e., the interval of periodic stability of the proposed
method is equal to (o)) which allow is to integrate successful problems with high
oscillatory or periodic solution. © 1999 Academic Press

Key Wordsradial Schodinger equation, exponentially fitted, multistep methods,
finite difference methods, phase shift, bound-states problem, resonance problem.

1. INTRODUCTION

The numerical solution of the Sattinger equation has been the subject of great activi
(see [1-3, 5-12, 15-26, 28, 31]) the aim being to achieve a fast and reliable metho
generates a numerical solution. The radial form of the &tihger equation can be written
as

y' ) = [0+ /% + V(x) — E]lyX). (1)
Equations of this type occur very frequently in theoretical physics and chemistry, quar
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physics and chemistry, physical chemistry (see, for example, [6-7, 14, 27]), and it is nee
to be able to solve them both efficiently and reliably by numerical methods. In (1) the fur
tion W(x) =1 (l + 1)/x?+ V (x) denoteghe effective potentialvhich satisfiedV(x) — 0
asx — oo, E is a real number denotinipe energyl is a given integer, an¥ is a given
function which denotes the potential. The boundary conditions are

y(©0) =0 (2

and a second boundary condition, for large values, afetermined by physical considera-
tions.

A fruitful way for developing efficient methods for the solution of (1) is to use exponenti:
fitting. Raptis and Allison [19] have derived a Numerov-type exponentially fitted metho
The computational results obtained in [19] indicate that these fitted methods are muchn
efficient than Numerov's method for the solution of (1). Since then, exponential fitting h
been the subject of great activity. An interesting paper in this general area is that of Ix
and Rizea [7]. They showed that for the resonance problem defined by (1) it is gener
more efficient to derive methods which exactly integrate functions of the form

(L, x, X2, ..., xP, exp(£uvx), xexp(xvX), ..., X™exp(+vx)}, ()

whereuv is the frequency of the problem (if a problem can be written in the fofw)y=
f(x)y(x), then thefrequency of the probleiis defined to be equal t¢/T (X)), rather than
using classical exponential fitting methods. The reason for this is explained in [25]. We n
here that the resonance problem is a stiff oscillatory problem. For the method obtainec
Ixaru and Rizea [7] we hava= 1 andp = 1. Another low order method of this type (with
m= 2 andp = 0) was developed by Raptis [16]. Simos [22] has derived a four-step meth
of this type which integrates more exponential functions and gives much more accu
results than the four-step methods of Raptis [15, 17]. For this method wethav@ and
p=0. Simos [23] has derived a family of four-step methods which give more efficie
results than other four-step methods. In particular, he has derived methods withand
p=5m=1landp=3, m=2andp=1, and finallym=3 and p=0. Also Raptis and
Cash [20] have derived a two-step method fitted to (3) witk 0 andp =5, based on the
well-known Runge—Kutta-type sixth-order formula of Cash and Raptis [2]. The method
Cash, Raptis, and Simos [3] is also based on the formula proposed in [2] and is fitted
(3) withm=1 andp = 3. All the above methods are not P-stable. Recently Coleman al
Ixaru [34] have derived P-stable exponentially fitted methods. The main problem of th
approach is the requirement for the knowledge of two frequencies for the same probl
For many real problems this is impossible.

In this paper we introduce a new approach for exponential fitting. The purpose of t
paper is to derive a family of simple P-stable Numerov-type predictor—corrector meth
fitted to (3) and, in particular, to derive methods with=0 and p=3 andm=1 and
p=1. The new methods are much more accurate than the corresponding exponent
fitted methods of Ixaret al.[7] and Raptis [16]. We have applied the new methodhéo
resonance problerfwhich arises from the one-dimensional Sadiiger equation) with two
different types of potential. Note th#ite resonance probleim one of the most difficult to
solve of all the problems based on the one-dimensionald8aigér equation because it has
highly oscillatory solutions, especially for large resonances (see Section 4). We have



P-STABLE EXPONENTIALLY FITTED METHODS 307

applied the new methods the bound-states problet/e note here that the method can b
applied to any problem of physics and chemistry, which can be expressed as a syste
coupled second-order differential equations which have oscillatory or periodic solutic
Problems of the above type are, for example, the Duffin’s type equations, the Bessel’s
equations, many problems of celestial mechanics, problems of molecular dynamics,
many others.

2. EXPONENTIAL MULTISTEP METHODS

For the numerical solution of theh-order initial value problem
yO =fxy, yP(A =0 j=01,...,r-1 4

whereA is low bound of the interval of integration, the multistep methods of the form

k k
Z aYnii = h' Z Bi f (Xnti, Ynti) (5)
i=0

i= i=0

over the equally spaced intervdls}*_, in [A, B] can be used, wherB is the upper bound
of the interval of integration.
The method (5) is associated with the operator

k
L) =) [az(x+ih) — h' bz (x +ih)], (6)
i=0

where z is a continuously differentiable function.

DerINITION 1. The multistep method (5) called algebraic (or exponential) of qoder
the associated linear operatorvanishes for any linear combination of the linearly inde
pendent functions X, x, ..., xP~1 (or expvex), expviX), ..., exp(vpir—1X) Where
vi,i=0,1,..., p+r — 1 arereal or complex numbers).

Remark 1 (See [30, 21]).If vy =v fori =0,1,...,n,n< p+r — 1, then the operator
L vanishes for any linear combination of €xp), x exp(vX), X2 exp(vX), . .., X" exp(vX),
explvngiX), ..., €XP(vpyr—1X).

Remark 2 (See [30, 21]).Every exponential multistep method corresponds in a uniq
way, to an algebraic multistep method (by setting- 0 for all i).

LeEmMA 1 (For proof see [29, 30]) Consider an operator L of the for(®). Withv € C,
heR,n>rif v=0,and n> 1 otherwisethen we have

L[x"expwx)] =0, n=0,1,....,n—1, L[x"expvx)] #0 @)

if and only if the functiorp has a zero of exact multiplicity s akp(vh), where s=n if
v#0,ands=n—rifv=0,p(w) =pw)/log w—ow), p(w) = Z:;oai w' ando (w) =
E:;o biw'.
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PropPosITIONL (For proof see [31, 21]) Consider an operator L with

- p+r-1

Llexp(vix)] =0, j=0,1,...,k< >

(8)

then for given aand p with a= (—1)"ax_; there is a unique set of Isuch that b=by_;.

In the present paper we investigate the qase?.

3. THE DERIVATION OF EXPONENTIALLY FITTED METHODS
FOR GENERAL PROBLEMS

Consider the construction of an exponentially fitted multistep method (5) which exac
integrates the set of functiofiexp(£v; x)}‘j‘:o. We will use this for the numerical solution
of the general problem (4).

From Lemma 1 we obtain the equations

plexp(xvjh)] — (£v;h) olexp(xvjh)] =0, 9)

or equivalently,

k
> [a exptvjh) — (£vjh) b expkvjh)] =0, j=0,1,....n, (10)
i=0

wheren <k anda;, bj, i =0(1)k are the coefficients of the multistep method (5).
We investigate here the case whkrig a positive number. Then, from Proposition 1 we
have a set ok equations:

a = (—1)'ak_i, bi=bei, i=01 ...,k (11)

We now letay = 1, which is the case adopted for all families of known multistep method:
Then (10) and (11) give the system of equations,

k/2—1 K k/2—1 K
2 ; a smhK2 — |>w1} + a2 — W) [2 ; b coshK2 — |>w,—] + byj2
. kwj
= —2 sinh| - forr =1,3,5,... (12)
k/2—1 K k/2—1 K
2 i h|=—i i —w' |2 b; h{=—i i b
; a; CcoS KZ |)w,}+ak/2 wJ[ ; , COS KZ |>w1}+ k/2
kwj
=—2 CcoS - forr =2,4,6, ..., (13)

wherew; =vjhandj=0,1,... k.

We now prove that the system of Egs. (i) has a unique solution wheA+w; and
(ii) lead to undetermined expressions of the formdOwhenw; = +w; for somei andj.

Let X(w) andY (w) (w = vh) be the matrices of the unknown coefficients in the system
of Egs. (12) and (13), respectively. Consider case (i). In order to make the mattigds
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(orY(w)) singular, then their columns would be linearly dependent. The elements in a
consist of terms like coskl w;, sinhNw;, and powers of; . The multiple angle hyperbolic
functions can be expressed in terms of powers of agsisinhx;, and their products. These
with powers ofw; form a linearly independent set of functions. Therefore the colum
cannot be linearly dependent. Hence, in this caseXdet # 0 (or detY (w) # 0). Thus
the system of equations (12) and (13) has a unique solution.

Consider case (ii). Here we simply have two rows of the matrix of coefficients the se
and, hence, de{(w) =0 (or detY (w) = 0). Similarly, we have the right-hand side of two
of the equations in (10) or (11) the same so that the numerator determinant which is for
when a column o (w) (or Y (w)) is replaced by the right-hand column will also give twc
identical rows. Hence, the numerator determinant is 0. In these cases L'Hopital's rule r
be used.

4. THE FAMILY OF EXPONENTIALLY FITTED METHOD

Consider the family of methods,

Yni1 = Yne1 — ah?(fo + foi1)
)7n—1 = Yn-1— ahz( fn + fn—l) (14)
Yo+l — 2Yn + Yn-1 = hz[bO( f_n+1 + f_nfl) + by fal,
whereyi = y(x),i =n—1,n, N+ Lyner =y(xnz1); fi =[1 (1 + 1/x?+V(x) — E]y(x),
i=n—1nn+1 fg=00+D/x + V1) — EIY(Xnsa).
This method for appropriate valuest®f i =0, 1, anda is of algebraic order four.

We require that the methods (14) should integrate exactly any linear combination o
functions:
{1, x, x2, x3, exp(£vx)},
(15)
{1, X, exp(£vX), X exp(vX)}.

To construct a method of the form (14) which integrates exactly the functions (15),
require that the method (14) integrates exactly (see [18, 21]),

{1, x, exp(£voX), exp(£v1X)}, (16)
and then put

vg=0, vi=nv, (17)
Vg =V1 =0.

The method (14) integrates exactly the functions.lDemanding that (14) integrates (16)
exactly, we obtain the following system of equationsigri =0, 1, anda,

2bow? coshw)) — 2boaw? + 2boaw] coshwj) + byw? = 2 coshiw;) — 2, (18)

wherew; =vjh, j =0, 1.
Solving forb;, i =0, 1 we obtain
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Casel. vp=0, v, =v,

1 w?-2T,
bo=—C———— 5,
2 w?Ty(1 + w?a) (19)
b — —2To + w? coshiw) + w?aTy
1= w2To(1 + w2a) ’
whereTy = —1+ coshw).
Casell. vg=vy=v,
by — w sinh(w) — 2Ty
0= w3(sinh(w) Ty + 2waTy) 20)
b 22 coshw)To — w sinh(w) + 4w?aT?
1 = )

w3(sinh(w) Ty + 2waTy)

whereTo = —1+ cosiw) andT; = 1+ w?a.

5. STABILITY ANALYSIS

The periodic stability analysis of a numerical method is important for the determinati
of the interval of periodicity. The interval of periodicity defines the stepsize which can |
used in order for the approximation of the solution of problems with high oscillatory «
periodic solution to be of the same order as the algebraic and/or exponential order of
method. It is obvious that when we have a large interval of periodicity the we can hav
large stepsize for the same accuracy. It is obvious, also, that when we have small inte
of periodicity or zero interval of periodicity then we can have only very small stepsizes
we may have divergence of the method. The most important property is the P-stability (i
the interval of periodic stability of the proposed method is equal toq)), because in this
case we can use a very large stepsize for the same accuracy.

We investigate the numerical integration of the problem:

Y =1y, YX)=Yo Y(X)=VYo (21)

To examine the stability properties of the methods for solving the initial-value proble
(21) Lambert and Watson [13] introduce the scalar test equation

y' = -—w?y (22)

and theinterval of periodicity When we apply a symmetric two-step method to the scalz
test equation (22) we obtain a difference equation of the form

Yn+1 — ZQ(S)yn + Yn-1= 0, (23)

wheres = wh, histhe steplengtiQ(s) = B(s)/ A(s), whereB(s) andA(s) are polynomials
in s, andy, is the computed approximation ygnh), n=0, 1, 2.. .. For explicit methods
A(s) =1.

The characteristic equation associated with (23) is

ZZ-2Q(s)z+1=0. (24)
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We have the following definitions.

DerINITION 2 [35]. The method (23) with the characteristic equation (24) is uncon
tionally stable if|z;| < 1 and|z,| < 1 for all values ofwh.

DerINITION 3. Following Lambert and Watson [13] we say that the numerical meth
(23) has an interval of periodicity (B42), if, for all s? € (0, HZ), z; andz, satisfy

71 =€, z,=¢"0, (25)

whered (s) is a real function os.
DEFINITION 4 [13]. The method (23) iP-stableif its interval of periodicityis (0, 00).
Based on the above we have the following theorems (for the proofs see [28]).

THEOREM 1. A method which has the characteristic equati@4) has an interval of
periodicity (0, H®), if for all s? € (0, HZ), |Q(s)| < 1. For the implicit methods the above
relation is equivalent to £s) + B(s) > 0.

If we apply the new method (14) to the scalar test equation (22) we obtain the differe
equation (23) and the characteristic equation (24) with

1
A(S) = 1+ 5%by — s*bpa, B(s) =1-— észbl — s*bpa. (26)

If we apply the coefficientby andb; obtained above we have

Casel. A(s) — B(s) = 1<,

_ 1 s?(w?—2coshw) +2) s*(w? — 2 coslw) + 2)a
A +BE =2-5 w2(—1+coshw))(1+ w2a) = w2(—1+ coshw))(1+ w?2a)

1s?(—2 coshw) + 2 + w? coshw) — w*a + w*a coshw))
2 w2(—14 coshw))(1+ w?a)

(27)

Casell.

s?(coshw) — 1)2(2w?a + 1)

A®) - B = 2w3(sinh(w) — 2wa + 2wacoshw) + w2asinh(w))

s%(w sinh(w) — 2 coshw) + 2) B s*(w sinh(w) — 2 coshw) + 2)a

A +BE) =2+ w3T (W) 2 w3T (W)
s?(2 coshiw)? — 2 cosliw) — w sinh(w) — 8w?a coshw) + 4w?a + 4w?a coshw)?)
w3T (W)
T(w) = sinh(w) — 2wa + 2wa coshw) + w?asinh(w). (28)

Requiring A(s) + B(s) > 0 for all values ofv and remarking that the stability polynomial
A(s) + B(s) for the two cases is a biquadratic polynomial we find the appropriate value:
a by solving the equation Dis 0, where Dis is the discriminant of the biquadratic equatiot
So, we have the following values for the coefficient
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Casel.

a— A8 HAE)T - dwtAw(e) +wt2wte fute) g
 w?(w¥(en)? - 2we” + w? + dw(e)? — 4w — 16e” + 8+ 8(e")?)

ae 4 — 8e” + 4(e”)? + 4w — 4w (e")? + w? + 2w?e” + w?(e”)? (30)
C w2(w2(er)? — 2w2er + w2 — dw(ev)2 + 4w — 16e” + 8+ 8(e*)?)’

The above formulae are subject to heavy cancellations for small values=afh (for
example, whenw < 0.5). In this case it is much more convenient to use series expansic
for the coefficient.. For the above reason we choose the second valuaivoid havingw
in the denominator in Taylor series expansions. An equivalent expression of this coeffic
is given by
Ao w?T, + 16w3 sin(w) + 4w?Ts + 16wT4 + 32Ts (31)
—wbTs + 64w?Tg — 64w?Ts ’
whereT, =1 — cosh2w), Tz = cosh2w) — 5 + 4 coshw), T4 = sinh(2w) — 2 sinh(w),
Ts = —cosh2w) — 3+ 4 coshw), Tg = 1 — coshw).
The Taylor series expansion of this coefficient is given by

1+ 1., 1038 , 61 o 49337 g
180" ~ 302400 ' 3024000  ~ 41912640000
2231377 4 36126667 1, 1064060519 .,
 32691859200000  9153720576000000 ' 4668397493760000000

(32

Substituting the value ad given by (30) to the coefficientsy andb; given by (19) we
obtain

1 —w?Ty + 4w sinh(w) — 8Ty

4 Tow?
o (33)
by — 1 —w?Ty — 4w sinh(w) + 8To
T2 Tow?
whereTy = —1+ coshw).
The Taylor series expansion of these coefficients are given by
S S SO SI SRR SR 1 - 691
==+ =w — w wo — w
= 12" 360 15120 604800 23950080 653837184008}
1 3617
_ 8)12+ %14’
3736212480 533531142144000 (34)
ST SN SE S 1 e, 1 o 691
1T 6 180" T 7560 302400 ' 11975040 326918592000
12 3617 14

* 18681062408 2667655710720000

For the above coefficients we have ti#gs) + B(s) > 0; i.e. the method iP-stable
Based on the above formulae, we can use the following algorithm

Whenw > 0.5 then (31) and (33) expansions can be used.
Whenw < 0.5 then (32) and (34) expansions can be used.
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Casell.

1
- 35
a 202 (35)
—2w? + 4w sinh(w) + 1 — cosh2w)

= 14w? + 4w — 16w?2 coshw) + 2w2 cosh2w)

(36)

We choose the second valueafo avoid havingw in the denominator. The Taylor series
expansion of this coefficient is given by

ao L1, 221 ., 877 . 11933 o = 1133023

=—— w w’ —

12 790" T 151200 ' 4536000 4656960000 ' 333590400000
3090911491  ,, 208956373909  ,,

" 6865290432000000 3501298120320000000 °

(37)

Substituting the value ol given by (36) to the coefficientsy andb; given by (20) we
obtain

_ 16w* — 32ws sinh(w) — 16w2Ts — 8wTy + 2T
- 8wb + 8w4T, + w?Ty

(38)
—32w* + 64w3 sinh(w) — 32w?Ts — 16w Tio + 4T11

b =
! 8wb + 8w, + w2To

where T, =1 — cosh(2w), Ts =—cosh2w) — 3+ 4 coshw), Ty =sinh(3w) 4+ 13 sinw) —
8 sinh(2w), Tg=cosh4w) + 12 costi2w) — 13— 8 cosi3w) + 8 coshw), Tg=cosh4w) —
4cosh2w) + 3, Tio = 3sinh3w) + 7sinhw) — 8sinh(2w), Ty = 3coshdw) +
4 cosi2w) — 7 — 8 cosi3w) + 8 coshw).

The Taylor series expansion of these coefficients are given by

i+i o 1 o4, 19 o 138 5 8039
180" ~ 1512" ' 907200 ' 17740800 81729648000
27851 4, 408887 iy
7846046208000 ' 8002967132160000 a9
b o5 Loe M oa 4o 17 g 1537 g (39)
6 90" 7560 ' 453600 26611200 81729648000
1613 4, 362987 u

150885504000  4001483566080000

For the above coefficients we have ti#gs) = B(s) > 0; i.e. the method iB-stable
Based on the above formulae, we can use the following algorithm:

Whenw > 0.5 then (36) and (38) expansions can be used.
Whenw < 0.5 then (37) and (39) expansions can be used.

The local truncation error is given by:

Casel.

1
—(D@)(y)(x) -

N
L.T.E.(h)_h< 540

1
4 4
360" (DY) M) = 772 (D )(y)(x)>. (40)
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Casell.

1 1 1
L.T.E.(h) = h6<—%(D@)(y>(x> - @wZ(D“‘))(y)(x) + @w“(D@)(y)(x)

1
- 144(D<“>)<y)(x>>. (41)

6. NUMERICAL ILLUSTRATIONS

In this section we present some numerical results to illustrate the performance of our |
methods. Consider the numerical integration of the radial@&thgéer equation (1).

6.1. Resonance Problem

We will here investigate the case of positive enelfgy: k?, corresponding to a scattering
state. In this case, in the asymptotic region, the potential funttion generally dies away
faster than the terr(l 4 1)/x?; Eq. (1) effectively reduces to

I +1
y'() + <k2_ ( ; ))y(x>=0 (42)

for x greater than some value X.

The above equation has linearly independent solutiofjgkx) andkxn (kx), where
j1(kx), nj(kx) are thespherical Bessel and Neumann functiorespectively. Thus, the
solution of Eq. (1) has the asymptotic form (whenr> co)

y(X) >~ AkXj(kx) — Bygxny (kx)
=~ DJ[sin(kx — | /2) 4 tang, cogkx — x1/2)], (43)

whereg, is thephase shiftvhich may be calculated from

tans, = Y(X2) S(X1) — Y(X1) S(X2) (44)

Y(x1)C(X2) — Y(X2)C(X1)
for x; andx, distinct points on the asymptotic region (for which we have thais the
right-hand end point of the interval of integration axid= x; — h, h is the stepsize) with
S(x) =kxj (kx) andC(x) = kxn (kx).

Since the problem is treated as an initial-value problem, one ngedady; before
starting a two-step method. From the initial conditign=0. The valuey; is computed
using the Runge—Kutta—Nysim' 12(10) method of Dormanet al. [36—37]. With these
starting values we evaluatexatof the asymptotic region the phase skijffrom the above
relation.

6.1.1. The Woods—Saxon potentials a test for the accuracy of our methods we con
sider the numerical integration of the Setiriger equation (1) with= 0 in the well-known
case where the potenti¥l(r) is the Woods—Saxon one,

Uo UpZ

VO=N =G T a2

(45)

with z= exp[(x — Xp)/a], up = —50,a=0.6, andXy=7.0.
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For positive energies one has the so-calledtnance problehwhenthe positive eigen-
energies lie under the potential barriefhe problem considered here consists either
finding thephase shif§ (E) = §, or of finding thoseE for E € [1, 1000], at whichs equals
/2. In our case we find the phase shifts for given energies. The obtained phase shift is
compared to the accurate value of the phase shift which is equdlto

The boundary conditions for this problem are

y() =0,
y(X) ~ cosl/EX] forlargex.

The domain of numerical integration is [0, 15].

For comparison purposes in our numerical illustration we use the well-known Numert
method (which is indicated as method [a]), the exponentially fitted methods of Raptis
Allison [19] (which is indicated as method [b]), Ixaru and Rizea [7] (which is indicate
as method [c]), the method of Chawd# al. [32] (which is indicated as method [d]), the
method of Chawlaet al. [33] (which is indicated as method [e]), the new exponentiall
fitted method (Case I) (which is indeicated as method [f]) and the new exponentially fi
method (Case Il) (which is indeicated as method [g]). We note here that the method:
and [c] integrate the same exponential functions as the methods produced in this pape
the methods [d] and [e] are fourth-order Numerov-type with minimal phase-lag or P-sta

The phase shifts obtained for the seven methods, with stepsizes equallit?", were
compared with the accurate value of the phase shift which is equaltoFigure 1 shows
the errors Ere= —log,glphase- shifteacuiated— /2| Of the highest eigenenergis =
989701916 for several values of

The performance of the present method is dependent on the choice of the fitting parat
v. For the purpose of obtaining our numerical results it is appropriate to chowsthe
way suggested by Ixaru and Rizea [7]. That is, we choose

(-=50— E)¥? forx € [0, 6.5],
v= (46)
{(—E)l/2 for x € (6.5, 15].
For a discussion of the reasons for choosing the values 50 and 6.5 and the extent to\
the results obtained depend on these values see [7, pp. 25].

6.1.2. Modified Woods-Saxon potentialn Fig. 2 some results errors for Es
—l0g; | Ecalculated— Eaccuratd Of the highest eigenenerdss = 1002768393 for several val-
ues ofn, obtained with another potential in (1), using the methods mentioned above,
shown. We note here that the valkg = 1002768393 is considered as the accurate on
We use this potential in order to see the accuracy of the proposed methods in the case
the potential has a singularity. The proposed potential is

D

whereVyy is the Woods—Saxon potential (45). For the purpose of our numerical experim
we use the same parameters as in [7],De= 20, | =2.

SinceV(x) is singular at the origin, we use the special strategy of [7]. We start t
integration from a point¢ > 0, and the initial valueg(¢) andy(e + h) for the integration
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Method [b]
Method [c]
Method [d]

Method [e]
Method [f]
Method [g]

SLEXL,

Err

n

FIG. 1. Values ofErr for several values af for the resonanc& =989701916. The non-existance of a value
for a method indicates that Err is negative. Methods used: (i) Numerov’s method (which is indicated as met
[a]); (ii) the exponentially-fitted methods of Raptis and Allison [19] (which is indicated as method [b]); (iii) Ixar
and Rizea [7] (which is indicated as method [c]); (iv) the method of Chawial. [32] (which is indicated as
method [d]); (v) the method of Chawkt al. [33] (which is indicated as method [e]); (vi) the new exponentially
fitted method (Case I) (which is indicated as method [f]); and (vii) the new exponentially fitted method (Case
(which is indicated as method [g]).

scheme are obtained using a perturbative method (see [6]). As in [7] we use the aﬂiue
for our numerical experiments.

For the purpose of obtaining our numerical results it is appropriate to chowsthe
way suggested by Ixaru and Rizea [7]. That is, we choose

W for x € [e, ai]

Ve for x € (ay, ag)
V= V(ag) for x € (ap, ag)

V(15) for x € (as, 15],

whereg;, i =1(1)3, are fully defined in [7].
The positive eigenenergies are computed as the solutions of the transcendental e
tion which results by matching the logarithmic derivatives of the forward and backwa
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—— Method [b]
1 —2%— Method]|c]
5 | —@)— Method]d]
4 —— Method]e]
4 —4&@— Method [f]
—©O— Method [g)
h 3
2 =4 A
1 —
° ' | ' | ' |
3 4 5 6

FIG. 2. Values oftrr for several values af for the positive eigenenerdy = 1002768393. The nonexistance
of a value for a method indicates that Err is negative. Methods used: (i) Numerov’s method (which is indicatt
method [a]); (ii) the exponentially fitted methods of Raptis and Allison [19] (which is indicated as method [t
(iii) Ixaru and Rizea [7] (which is indicated as method [c]); (iv) the method of Chatéd [32] (which is indicated
as method [d]); (v) the method of Chawdaal. [33] (which is indicated as method [€]); (vi) the new exponentially
fitted method (Case I) (which is indeicated as method [f]; and (vii) the new exponentially fitted method (Cas
(which is indeicated as method [g]).

approximate solutions at the poiat. The asymptotic solution in this case is the well
known Coulomb function. The values of the Coulomb function at the poiatsl5 and

x =15- h, required for the backward integration, are calculated using the method wt
is fully described in [7].

6.2. The Bound-States Problem

For negative energies we solve the so-called bound-states problem, i.e. Eq. (1:xWith
and boundary conditions given by

y(0) =0,
y(X) ~ exp(—+/—EXx) for largex.

In order to solve this problem numerically we use a strategy which has been propose
Cooley [5] and has been improved by Blatt [1]. This strategy involves integrating forw:
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from the pointx = 0, backward from the poing, = 15, and matching up the solution at some
internal point in the range of integration. As initial conditions for the backward integratic
we take (see [3]):

y(Xp) = exp(—v'—EXp), Y(Xp —h) = exp[-v—E (X, — h)], (48)

whereh is the steplength of integration of the numerical method.

The true solutions to the Woods—Saxon bound-states problem were obtained corre
nine decimal places, using the analytic solution, and the numerical results obtained for
seven methods mentioned above were compared to this true solution. In Fig. 3 some re
for errors Ere= —100;g| Ecalculated— Eaccurard Of the eigenenerglo = —49.457788728 using
stepsizes equal th=1/2" for several values af are shown. In Fig. 4 some results for

Method [a]
Method [b]
Method [c]
Method {d]
Method [e]
Method [f]

12 —

Petwety

Method [g]

Err

0
| ' I ' I ' I ' I
1 2 3 4 5
n

FIG. 3. Values of Err for several values ofi for the eigenvalueE = —49.457788728 Methods used:
(i) Numerov’s method (which is indicated as method [a]); (ii) the exponentially fitted methods of Raptis a
Allison [19] (which is indicated as method [b]); (iii) Ixaru and Rizea [7] (which is indicated as method [c])
(iv) the method of Chawla&t al. [32] (which is indicated as method [d]); (v) the method of Chaetlal. [33]
(which is indicated as method [e]); (vi) the new exponentially fitted method (Case ) (which is indicated as mett
[f]); and (vii) the new exponentially fitted method (Case Il) (which is indicated as method [g]).
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—z#&— Method [a]
10— —A— Method [b]
| —@— Method[c]
—Jl— Method [d]
8 —
—&@— Method [e]
{ —©— Method[f]
5 —&S—  Method [g]
i
4 =
2
° ] ! | ' L
1 2 3 4 5
n

FIG. 4. Values of Err for several values oh for the eigenvalueE =—8.676081670. Methods used:
(i) Numerov’s method (which is indicated as method [a]); (ii) the exponentially fitted methods of Raptis :
Allison [19] (which is indicated as method [b]); (iii) Ixaru and Rizea [7] (which is indicated as method [c!
(iv) the method of Chawlat al. [32] (which is indicated as method [d]); (v) the method of Chaetal. [33]
(whichisindicated as method [e]); (vi) the new exponentially fitted method (Case I) (which is indeicated as me
[f]); and (vii) the new exponentially fitted method (Case Il) (which is indeicated as method [g]).

Err= —100, | Ecalculated— Eaccurard Of the eigenenergig,, = —8.676081670 using stepsizes
equal toh=1/2" for several values ofi are also shown. We note here that the value
Eo=—49.457788728 andE, = —8.676081670 are considered as the accurate ones.
In all the above examples we compare the value of Err, i.e. the values of absolute errol
obvious that when we have a small absolute error, the value of Erris large. Based on thi
on Figs. 1-4, we can observe that the new exponentially fitted P-stable methods deve
in this paper are more accurate than the other similar well-known exponentially fitted o
i.e. the method of Raptis and Allison [19] and the method of Ixaru and Rizea [7], and they
more accurate than the very popular methods of Chaivid. [32—33]. More specifically,
from the results presented in the Figs. 1-4 one can see the importance of the prope
P-stability, since it can be seen that, even for high resonances or eigenvalues (in v
cases the solution is highly oscillatory) and high stepsizes, the new methods are much
accurate than the other finite difference ones (most of which are diverged for high stepsi
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7. CONCLUSIONS

In this paper a new approach for constructing exponentially fitted methods is develoy
Using this new approach we can construct methods which exactly integrate function:
the form (3) and which are P-stable. With this new approach we must know only o
approximation of the frequency of the problem for each interval of integration. Based
this new approach two P-stable exponentially fitted methods are obtained. Numerical
theoretical results show that these methods are much more accurate than similar well-kr
exponentially fitted ones, i.e. methods which integrate the same functions.

All computations were carried out on a IBM PC-AT compatible 80486 using doub
precision arithmetic with 16 significant digit accuracy (IEEE standard).
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